Optimal Computational Split-state Non-malleable Codes

نویسندگان

  • Divesh Aggarwal
  • Shashank Agrawal
  • Divya Gupta
  • Hemanta K. Maji
  • Omkant Pandey
  • Manoj Prabhakaran
چکیده

Non-malleable codes are a generalization of classical errorcorrecting codes where the act of “corrupting” a codeword is replaced by a “tampering” adversary. Non-malleable codes guarantee that the message contained in the tampered codeword is either the original messagem, or a completely unrelated one. In the common split-state model, the codeword consists of multiple blocks (or states) and each block is tampered with independently. The central goal in the split-state model is to construct high rate nonmalleable codes against all functions with only two states (which are necessary). Following a series of long and impressive line of work, constant rate, two-state, non-malleable codes against all functions were recently achieved by Aggarwal et al. (STOC 2015). Though constant, the rate of all known constructions in the split state model is very far from optimal (even with more than two states). In this work, we consider the question of improving the rate of split-state non-malleable codes. In the “information theoretic” setting, it is not possible to go beyond rate 1/2. We therefore focus on the standard computational setting. In this setting, each tampering function is required to ? Research supported in part by NSF grant 1228856. ?? Research supported in part from a DARPA/ONR PROCEED award, NSF Frontier Award 1413955, NSF grants 1228984, 1136174, 1118096, and 1065276, a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant from Intel, and an Okawa Foundation Research Grant. This material is based upon work supported by the Defense Advanced Research Projects Agency through the U.S. Office of Naval Research under Contract N00014-111-0389. The views expressed are those of the author and do not reflect the official policy or position of the Department of Defense, the National Science Foundation, or the U.S. Government. ? ? ? This work was done in part while the author was visiting the Simons Institute for the Theory of Computing, supported by the Simons Foundation and by the DIMACS/Simons Collaboration in Cryptography through NSF grant #CNS-1523467. be efficiently computable, and the message in the tampered codeword is required to be either the original message m or a “computationally” independent one. In this setting, assuming only the existence of one-way functions, we present a compiler which converts any poor rate, two-state, (sufficiently strong) non-malleable code into a rate-1, two-state, computational nonmalleable code. These parameters are asymptotically optimal. Furthermore, for the qualitative optimality of our result, we generalize the result of Cheraghchi and Guruswami (ITCS 2014) to show that the existence of one-way functions is necessary to achieve rate > 1/2 for such codes. Our compiler requires a stronger form of non-malleability, called augmented non-malleability. This notion requires a stronger simulation guarantee for non-malleable codes and simplifies their modular usage in cryptographic settings where composition occurs. Unfortunately, this form of non-malleability is neither straightforward nor generally guaranteed by known results. Nevertheless, we prove this stronger form of nonmalleability for the two-state construction of Aggarwal, Dodis, and Lovett (STOC 14). This result is of independent interest.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Information Theoretic Continuously Non-Malleable Codes in the Constant Split-State Model

We present an information-theoretically secure continuously non-malleable code in the constant split-state model, where there is a self-destruct mechanism which ensures that the adversary loses access to tampering after the first failed decoding. Prior to our result only codes with computational security were known for this model, and it has been an open problem to construct such a code with in...

متن کامل

Non-malleable Reductions and Applications (Full version)

Non-malleable codes, introduced by Dziembowski, Pietrzak and Wichs [DPW10], provide a useful message integrity guarantee in situations where traditional error-correction (and even error-detection) is impossible; for example, when the attacker can completely overwrite the encoded message. Informally, a code is non-malleable if the message contained in a modified codeword is either the original m...

متن کامل

Pseudorandom Correlation Breakers, Independence Preserving Mergers and their Applications

The recent line of study on randomness extractors has been a great success, resulting in exciting new techniques, new connections, and breakthroughs to long standing open problems in the following five seemingly different topics: seeded non-malleable extractors, privacy amplification protocols with an active adversary, independent source extractors (and explicit Ramsey graphs), non-malleable in...

متن کامل

Inception Makes Non-malleable Codes Stronger

Non-malleable codes (NMCs), introduced by Dziembowski, Pietrzak and Wichs [DPW10], provide a useful message integrity guarantee in situations where traditional error-correction (and even errordetection) is impossible; for example, when the attacker can completely overwrite the encoded message. NMCs have emerged as a fundamental object at the intersection of coding theory and cryptography. A lar...

متن کامل

Continuous Non-malleable Codes

Non-malleable codes are a natural relaxation of error correcting/detecting codes that have useful applications in the context of tamper resilient cryptography. Informally, a code is non-malleable if an adversary trying to tamper with an encoding of a given message can only leave it unchanged or modify it to the encoding of a completely unrelated value. This paper introduces an extension of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015